A Review Article on Current Pharmacological Status of Cardioprotective Plant
Abstract
Cardiovascular diseases involve abnormalities of the heart and blood vessels, such as coronary heart disease, hypertension, and cerebrovascular disease, and are the main cause of the increase in mortality rate in the world. Herbal plants tend to be very useful to prevent cardiovascular disease. The phytoconstituents of herbal medicinal plants like tannins, alkaloids, saponins, flavonoids, and glycosides that have the ability to prevent cardiovascular diseases. Examples such as Nerium oleander, Amaranthus viridis, Ginkgo biloba, Daucus carota, Gingerol, Tinospora cordifolia etc. Many studies investigated the cardioprotective effect of these natural products against experimentally-induced myocardial damage, and their results revealed that their potential phytochemicals exhibited significant antioxidant, anti-apoptotic, anti-inflammatory, anti-atherosclerotic activities. The review highlights the promising mechanisms and probable applications of various herbal plants, and their phytochemicals in the prevention and treatment of cardiovascular diseases. The cardioprotective plants contain a wide- variety of bioactive compound involve with diosgenin, isoflavones, sulforaphane, carotinized, catechin and quercetin are increasing the cardio protection and decreases the chances of cardiac abnormalities.
References
2. Wang CZ, Mehendale SR, Yuan CS. Commonly used antioxidant botanicals: active constituents and their potential role in cardiovascular illness. Am J Chin Med. 2009;35(04):543-558
3. Zern TL, Fernandez ML. Cardioprotective effects of dietary polyphenols. J Nutr. 2009; 135(10):2291-2294.
4. Silverstein DC, kate H. Myocardial Infarction, Small Animal Critical Care Medicine. Ch 41. St Lowis, MO: Saunders; 2009.p. 174-6
5. Dec GW. Digoxin remains useful in the management of chronic heart failure. Med Clin. 2010;87(2):317-337
6. . Vukajlovic DD, Guettler N, Miric M, Pitschner HF. Effects of atropine and pirenzepine on heart rate turbulence. Ann Noninvas Electro. 2010;11(1):34-37
7. Zern TL, Fernandez ML. Cardioprotective effects of dietary polyphenols. J Nutr. 2010;135(10):2291-2294
8. Sambanthamurthi, R.; Tan, Y.A.; Sundram, K.; Abeywardena, M.; Sambandan, T.G.; Rha, C.; Sinskey, A.J.; Subramaniam, K.; Leow, S.S.; Hayes, K.C.; et al. Oil palm vegetation liquor: A new source of phenolic bioactives. Br. J. Nutr. 2011, 106, 1655–1663. [CrossRef]
9. Leow SS, Sekaran SD, Tan YA, Sundram K Sambanthamurthi R. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice. Nutr. Neurosci. 2013, 16, 207–217. [CrossRef]
10. . Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA: A Cancer Journal for Clinicians. 2013; 66:309-25.
11. Che Idris, C.A.; Karupaiah, T.; Sundram, K.; Tan, Y.A.; Balasundram, A.; Leow, S.S.; Nasruddin, N.S.; Sambanthamurthi, R. Oil palm phenolics and vitamin E reduce atherosclerosis in rabbits. J. Funct. Foods 2014, 7, 541–550. [CrossRef]
12. . Leow, S.S.; Sekaran, S.D.; Sundram, K.; Tan, Y.A.; Sambanthamurthi, R. Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes. BMC Genom. 2014, 12, 432. [CrossRef].
13. C. Katiyar, A. Gupta, S. Kanjilal, S. Katiyar, Drug discovery from plant sources: an integrated approach, Ayu 33 (2014) 10–19, doi: http://dx.doi.org/10.4103/ 0974-8520.100295.
14. Sharma, P.K. Mediratta, K.K. Sharma, M. Fahim, Lipotab, a polyherbal formulation, attenuates isoprenaline-induced left ventricular remodeling and heart failure in rats, Hum. Exp. Toxicol. 30 (2014) 1000–1008, doi:http:// dx.doi.org/10.1177/0960327110384529
15. S.N. Goyal, C. Sharma, U.B. Mahajan, C.R. Patil, Y.O. Agrawal, S. Kumari, D.S. Arya, S. Ojha, Protective effects of cardamom in isoproterenol-induced myocardial infarction in rats, Int. J. Mol. Sci. 16 (2015) 27457–27469
16. H.S. Ghelani, B.M. Patel, R.H. Gokani, M.A. Rachchh, R. Linn, Evaluation of polyherbal formulation (SJT-HT-03) for antihypertensive activity in albino rats, Ayu 35 (2015) 452–457, doi: http://dx.doi.org/10.4103/0974- 8520.159034.
17. Hitit M, Corum O, Corum DD, et al. A cardioprotective role of Nerium oleander with the expression of hypoxia inducible factor 2A mRNA by increasing antioxidant enzymes in rat heart tissue. Acta Sci Vet. 2017; 46(1):1560.
18. Dey P, Roy S, Chaudhuri T. A quantitative assessment of bioactive phytochemicals of Nerium indicum: an ethnopharmacological herb. Int J Res Pharm Sci. 2018;3(4):579-587
19. Khan M, Musharaf S, Ibrar M, Hussain F. Pharmacognostic evaluation of the Amaranthus viridis L. Res Pharmaceut Biotechnol. 2018; 3(1):11-16.
20. Vakili SA, Talageri A, George A, Mathai B. Acute toxicity of petroleum ether extracts of Amaranthus viridis L. Int J Pharma Res Health Sci. 2018;6(3):2591-2593.
21. Bierman EL, Amaral JA, Belknap BH. Hyperlipemia and diabetes mellitus. Diabetes. 2019; 15(9):675-679.
22. Kumar B, Lakshman K, Swamy V, et al. Hepatoprotective and antioxidant activities of Amaranthus viridis linn. Macedonian J Med Sci. 2019; 4(2):125-130.
23. Badore NS, Das PK, Pillai S, Thakur A. Role of Ginkgo biloba extract, against isoproterenol induced cardiac toxicity in rats. Indian J Pharm Educ. 2019; 51(4): S691-S699.
24. Fu HW, Zhang L, Yi T, Feng YL, Tian JK. Two new guaiane-type sesquiterpenoids from the fruits of Daucus carota L. Fitoterapia. 2019; 81(5):443-446.
25. Zaini R, Clench MR, Le Maitre CL. Bioactive chemicals from carrot (Daucus carota) juice extracts for the treatment of leukemia. J Med Food. 2019; 14(11):1303-1312.
26. Jiang Y, Huang M, Wisniewski M, Li H, Zhang M, Tao X, et al. Transcriptome analysis provides insights into gingerol biosynthesis in ginger (Zingiber officinale). The plant genome. 2019; 11:1-11.
27. Yusof YAM. Gingerol and its role in chronic diseases. Drug Discovery from Mother Nature: Springer, pp; 2019.
28. Wang Q, Wei Q, Yang Q, Cao X, Li Q, Shi F, et al. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect. International Journal of Pharmaceutics. 2019; 535:308-15
29. Mridula K, Parthibhan S, Kumar TS, Rao M. In vitro organogenesis from Tinospora cordifolia (Willd.) Miers—a highly valuable medicinal plant. S Afr J Bot. 2019; 113:84-90
30. Mridula K, Parthibhan S, Kumar TS, Rao M. In vitro organogenesis from Tinospora cordifolia (Willd.) Miers—a highly valuable medicinal plant. S Afr J Bot. 2019; 113:84-90.
31. Upadhay A, Kumar K, Kumar A, Mishra H. Tinospora cordifolia (Wild) Hook. F and Thoms. (Guduchi)–validation of the ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2019; 1:112-121.
32. Saxena R, Sulakhiya KB, Rathore M. Cichorium intibus Linn: a review of pharmacological profile. Int J Curr Pharmaceutl Res. 2020; 6(4):11-15.
33. Abbas ZK, Saggu S, Sakeran MI, Zidan N, Rehman H, Ansari AA. Phytochemical, antioxidant, and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J Biol Sci. 2020;22(3):322-326
34. Bantawa P, Ghosh SK, Bhandari P, et al. Micropropagation of an elite line of Picrorhiza scrophulariiflora, pennell, an endangered high valued medicinal plant of the Indo-China Himalayan region. Med Aromat Plant Sci Biotechnol. 2020; 4:1-7
35. Sultan P, Rasool S, Hassan QP. Picrorhiza kurroa Royle ex Benth. A plant of diverse pharmacological potential. Ann Phytomed. 2020;6(1):63-67
36. Shukla B, Visen P, Patnaik G, Dhawan B. Choleretic effect of picroliv, the hepatoprotective principle of Picrorhiza kurroa1. Planta Medica. 2021; 57(01):29-33.
37. Wang L, Li Y, Deng W, et al. Cardio protection of ultrafine granular powder for Salvia miltiorrhiza Bunge against myocardial infarction. J Ethnopharmacol. 2021; 222:99-106.
38. Shi M, Huang F, Deng C, Wang Y, Kai G. Bioactivities, biosynthesis, and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit Rev Food Sci. 2021;59(6):953-964
39. Zhou W, Huang Q, Wu X, et al. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep U K. 2021;7(1):10554
40. Li XM, Yang PL. Research progress of Sonchus species. Int J Food Prop. 2022;21(1):147-157
41. Helal AM, Nakamura N, El-Askary H, Hattori M. Sesquiterpene lactone glucosides from Sonchus asper. Phytochemistry. 2021; 53(4):473-477
42. Kavitha C, Thangamani C. Amazing bean Mucuna pruriens: a comprehensive review. J Med Plants Res. 2021;8(2):138-143
43. Sathyanarayana N, Pittala RK, Tripathi PK, et al. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification, and validation of EST-SSR markers. BMC Genomics. 2021;18(1):409
44. Intararuchikul T, Teerapattarakan N, Rodsiri R, et al. Effects of Centella asiatica extract on antioxidant status and liver metabolome of rotenone-treated rats using GC–MS. Biomed Chromatogr. 2021;33(2): e4395
45. Hamid K, Ng I, Tallapragada VJ, et al. An investigation of the differential effects of ursane triterpenoids from Centella asiatica, and their semisynthetic analogues, on GABAA receptors. Chem Biol Drug Des. 2021;88(3):386-397
46. Mahendran, S. Molecules of interest - Mangiferin - A review. Annual Research & Review in Biology 2021; 5:307-20.
47. Nunez Selles AJ, Daglia M, Rastrelli L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti‐angiogenic, apoptopic, and gene regulatory effects. Biofactors. 2021; 42:475-91.
48. Bhatt L, Sebastian B, Joshi V. Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity. Journal of Ayurveda and integrative medicine. 2021; 8:62-7
49. Mozos I, Stoian D, Caraba A, Malainer C, Horbańczuk J, Atanasov A. Lycopene, and vascular health. Frontiers in Pharmacology. 2021; 9:521.
50. Ojha S, Al Taee H, Goyal S, Mahajan UB, Patil CR, Arya D, et al. Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxidative Medicine and Cellular Longevity. 2021; 2016:1-19.
51. Sharma BK. Rauwolfia: Cultivation and collection. 2011, URL: http://www.biotecharticles.com/Agricultur e-Article/Rauwolfia-Cultivation-andCollection-892.html (Date of Visit: September 05, 2021; Time of Visit: 7:30PM).
52. Werner G. The central control of the blood pressure, Indian M. Gaz. 1953; 88: 111p
53. Ahmad N, Fazal H, Abbasi BH, Farooq S, Ali M, et al. (2021) Biological role of Piper nigrum L. (Black pepper): A review. Asian Pacific J Trop Biomed: S1945-S1953
54. Acharya SG, Momin AH and Gajjar AV (2021) Review of Piperine as A BioEnhancer. Am J Pharm Tech Res 2:32-44
55. Sivarajan VV, Pushpangadan P, Kumar PKR (2022) A Revision of Trichopus (Trichopodaceae). Kew Bull 45: 353-360.
56. Pragada R, Veeravalli KK, Chowdary K, Routhu K. Cardioprotective activity of Hydrocotyle asiatica L. in ischemia–reperfusion induced myocardial infarction in rats. J Ethnopharmacol. 2022;93(1):105-108
57. edes C, Yousef GG, Robert P, Grace MH, Lila MA, Gómez M, Gebauer M and Montenegro G, Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [ Mol.] Stuntz) from different geographical regions in Chile. J Sci Food Agric 94: 2639–2648 DOI:10.1002/jsfa.6602 (2022)
58. Cespedes C, alarcon J, Avila J and Nieto A, Anti-inflammatory Activity of Aristotelia chilensis Mol. (Stuntz) (Elaeocarpaceae). BLACPMA, 9 (2), 91 - 99 (2022)
59. Sahidi F and Naczk M, Phenolics in Food and Nutraceuticals. This edition published in the Taylor & Francis e-Library ISBN 0-203-59485-1, International Standard Book Number 1-58716- 138-9 pp. 1-58 (2022)
60. Subramoniam A, Madhavachandran V, Rajasekharan S, Pushpangadan P. Aphrodisiac property of Trichopus zeylanicus extract in male mice. J. Ethnopharmacology. 2022; 57(1):21 -7.
61. Subramoniam A, Evans DA, Rajasekharan S, Pushpangadan P. Hepatoprotective activity of Trichopus zeylanicus extract against paracetamol -induced hepatic damage in rats. Indian. J Experimental Biol. 2022; 36(4):385 -9.
62. Subramoniam A, Evans DA, Rajasekharan S, Pushpangadan P. Inhibition of antigen -induced degranulation of sensitized mast cells by Trichopus zeylanicus in mice and rats. J Ethnopharm. 2022; 68(1):137 -43.
63. Singh B, Chandan BK, Sharma N, Singh S, Khajuria A, Gupta DK. Adaptogenic activity of glyco -peptido -lipid fraction from the alcoholic extract of Trichopus zeylanicus Gaerten. (Part II). Phytomedicine. 2022; 12(6):468 -81.
64. Velavan S, Selvarani S, Adhithan A. Cardio protective effect of Trichopus zeylanicus against myocardial ischemia induced by isoproterenol in rats. Bangladesh J Pharm. 2022; 4(2):88 -91.
65. Rishikesh RS, Kumar SR, Ravindranath SB, Vaibhav BV. Anti -ulcer potential of saponin fraction of Trichopus zeylanicus on various experimental animal models. Inter J Green Pharm. 2022; 11(1):11 – 6.